Torch/Lua,如何在暹罗神经网络中正确实施小批量训练? [英] Torch / Lua, how to correctly implement minibatch training in a siamese neural network?

查看:96
本文介绍了Torch/Lua,如何在暹罗神经网络中正确实施小批量训练?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

正如我之前的一些问题所提到的,我仍在努力在Torch中实现暹罗神经网络. 我终于有了一个很好的工作实现,但是现在我想添加一个小批量培训.也就是说,我想用一组训练元素来训练暹罗神经网络,而不是只使用一个.

I'm still working on my implementation of a siamese neural network in Torch, as mentioned in some of my previous questions. I finally got a good working implementation of it, but now I'd like to add a mini-batch training. That is, I would like to train the siamese neural network with a set of training elements, instead of using just one.

不幸的是,我的2个迷你批次的实现无法正常工作.错误的反向传播存在一个我无法解决的问题. 这是主要架构:

Unfortunately, my implementation for 2 minibatches does not work. There's a problem in the back-propagation of the error, that I cannot solve. Here's the main architecture:

th> perceptron_general
nn.Sequential {
  [input -> (1) -> output]
  (1): nn.ParallelTable {
    input
      |`-> (1): nn.Sequential {
      |      [input -> (1) -> (2) -> output]
      |      (1): nn.ParallelTable {
      |        input
      |          |`-> (1): nn.Sequential {
      |          |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
      |          |      (1): nn.Linear(6 -> 3)
      |          |      (2): nn.Tanh
      |          |      (3): nn.Dropout
      |          |      (4): nn.Linear(3 -> 2)
      |          |      (5): nn.Tanh
      |          |    }
      |          |`-> (2): nn.Sequential {
      |          |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
      |          |      (1): nn.Linear(6 -> 3)
      |          |      (2): nn.Tanh
      |          |      (3): nn.Dropout
      |          |      (4): nn.Linear(3 -> 2)
      |          |      (5): nn.Tanh
      |          |    }
      |           ... -> output
      |      }
      |      (2): nn.CosineDistance
      |    }
      |`-> (2): nn.Sequential {
      |      [input -> (1) -> (2) -> output]
      |      (1): nn.ParallelTable {
      |        input
      |          |`-> (1): nn.Sequential {
      |          |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
      |          |      (1): nn.Linear(6 -> 3)
      |          |      (2): nn.Tanh
      |          |      (3): nn.Dropout
      |          |      (4): nn.Linear(3 -> 2)
      |          |      (5): nn.Tanh
      |          |    }
      |          |`-> (2): nn.Sequential {
      |          |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
      |          |      (1): nn.Linear(6 -> 3)
      |          |      (2): nn.Tanh
      |          |      (3): nn.Dropout
      |          |      (4): nn.Linear(3 -> 2)
      |          |      (5): nn.Tanh
      |          |    }
      |           ... -> output
      |      }
      |      (2): nn.CosineDistance
      |    }
       ... -> output
  }
}

我有一个上层神经网络和一个下层神经网络.它们都插入到并行表中.然后将此并行表插入到感知器中 第二个并行表也是如此. 然后,将两个并行表感知器放到一个通用并行表中,该表将插入一个通用percepron中.

I've an upper neural network, put together with a lower neural network. They all are insereted into a parallel table. This parallel table is then inserted into a perceptron The same is made for a second parallel table. Then the two parallel-table-perceptrons are put together into a general parallel table, that is inserted in a general percepron.

我认为这种体系结构是正确的,但是我缺少了带有梯度更新功能的东西.

I think this architecture is right, but I'm missing something with the gradient_update function.

这是我的代码:

-- rounds a real number num to the number having idp values after the dot
function round(num, idp)
  local mult = 10^(idp or 0)
  return math.floor(num * mult + 0.5) / mult
end

idp = 4

-- change the sign of an array
function changeSignToArray(array)

  newArray={}
  for i=1,#array do
    newArray[i]= -1 * array[i]
  end

  return newArray;
end


-- subtable function
function subtable(table, lower_index, upper_index)

  return_table = {}
  k = 1
  for i=lower_index,upper_index do
      return_table[k] = table[i]
      k = k+1
  end

return return_table;

end

-- training
function gradientUpdate(perceptron, dataset, target, learningRate)

  temp_dataset = dataset
  temp_target = target
  temp_perceptron = perceptron

  print("### new gradientUpdate() ###");

  print("#dataset "..#dataset);
  print("(#dataset[1][1])[1] "..(#dataset[1][1])[1]);
  print("#target "..#target);

  predictionValue = (perceptron:forward(dataset)[1])[1]
  print('predictionValue '..predictionValue);

  --   if predictionValue*target < 1 then

  realTarget=changeSignToArray(target)
  gradientWrtOutput = torch.Tensor(realTarget)
  temp_gradient = gradientWrtOutput

  perceptron:zeroGradParameters() 
  perceptron:backward(dataset, gradientWrtOutput) 
  perceptron:updateParameters(learningRate)
  -- end

    return perceptron;
end

require "os"
require "nn"

dropOutFlag=TRUE
input_number=6
hiddenUnits=3
output_number=2
hiddenLayers=5

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
-- LET'S PREPARE THE DATA -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 


dim = 483

trainDataset = {}; 
targetDataset = {}
for i=1,dim do
     trainDataset[i]={torch.rand(input_number),  torch.rand(input_number)}

     if i%2==0 then targetDataset[i] = 1
     else targetDataset[i] = -1 
     end
end
function targetDataset:size() return #targetDataset end
target = -1 -- the target for cosine similarity is +1 for genuine signatures, and -1 for forgeries

io.write("#trainDataset="..#trainDataset.." \n");
io.write("#trainDataset[1]="..#trainDataset[1].." \n");
io.write("#targetDataset="..#targetDataset.." \n");


-- matrix having 5 rows * 2 columns
max_iterations = 25
learnRate = 0.1
minibatchSize = 10


for m=30,1,-1 do
  if (dim % m) == 0 then minibatchSize=m; break; end
end
minibatchSize = 2
print('minibatchSize='..minibatchSize);
span_number = dim/minibatchSize
print('span_number '..span_number);


minibatch_train = {torch.Tensor(span_number)}
target_train = {torch.Tensor(span_number)}

i=1
for m=1, span_number do
     minibatch_train[i] = torch.Tensor(minibatchSize)
     target_train[i] = torch.Tensor(minibatchSize)

     lower_index = 1+minibatchSize*(m-1)
     upper_index = (m-1)*minibatchSize+minibatchSize
     io.write("i= "..i.." lower_index ".. lower_index)
     io.write(" upper_index "..upper_index.."\n")

     minibatch_train[i] = subtable(trainDataset, lower_index, upper_index)
     target_train[i] = subtable(targetDataset, lower_index, upper_index)

     i = i + 1
end

print('\n#minibatch_train '.. #minibatch_train);
print('#minibatch_train[1] '.. #minibatch_train[1]);
print('#target_train '.. #target_train);
print('#target_train[1] '.. #target_train[1]..'\n');


-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
-- LET'S PREPARE THE SIAMESE NEURAL NETWORK -- 
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 


-- imagine we have one network we are interested in, it is called "perceptronUpper"
perceptronUpper= nn.Sequential()
perceptronUpper:add(nn.Linear(input_number, hiddenUnits))
perceptronUpper:add(nn.Tanh())
if dropOutFlag==TRUE then perceptronUpper:add(nn.Dropout()) end

-- for w=1, hiddenLayers do
--   perceptronUpper:add(nn.Linear(hiddenUnits,hiddenUnits))
--   perceptronUpper:add(nn.Tanh())
--   if dropOutFlag==TRUE then perceptronUpper:add(nn.Dropout()) end
-- end

perceptronUpper:add(nn.Linear(hiddenUnits,output_number))
perceptronUpper:add(nn.Tanh())


-- But we want to push examples towards or away from each other
-- so we make another copy of it called perceptronLower
-- this *shares* the same weights via the set command, but has its own set of temporary gradient storage
-- that's why we create it again (so that the gradients of the pair don't wipe each other)
perceptronLower= perceptronUpper:clone('weight', 'gradWeights', 'gradBias', 'bias')
-- updates the gradient weights and gradient bias

-- we make a parallel table that takes a pair of examples as input. they both go through the same (cloned) perceptron
-- ParallelTable is a container module that, in its forward() method, applies the i-th member module to the i-th input, and outputs a table of the set of outputs.
parallel_table = nn.ParallelTable()
parallel_table:add(perceptronUpper)
parallel_table:add(perceptronLower)

-- now we define our top level network that takes this parallel table and computes the cosine distance betweem
-- the pair of outputs
perceptron= nn.Sequential()
perceptron:add(parallel_table)
perceptron:add(nn.CosineDistance())


-- For the minibatch
general_parallel= nn.ParallelTable()
for mb=1,minibatchSize do
  general_parallel:add(perceptron)
end

perceptron_general = nn.Sequential() 
perceptron_general:add(general_parallel)


-- -- # TRAINING:
-- -- training on only 1 example for TRUE

for i = 1, max_iterations do

    perceptron_general = gradientUpdate(perceptron_general, minibatch_train[1], target_train[1], learnRate)

    perceptron_general = round((perceptron_general:forward(dataset)[1]),idp);
    io.write("i="..i..") optimization predictionValue= "..prediction.."\n");
    if(prediction==target) then io.write("\tprediction==target OUT"); break end

end

问题来自对向后函数的调用. 尺寸可能有问题...

The problem comes with the call to backwards() function. Possibly there's a problem in the dimensions...

您对如何解决此问题有任何想法吗?

Do you have any ideas on how to solve this?

推荐答案

问题来自对向后函数的调用.尺寸可能有问题...

The problem comes with the call to backwards() function. Possibly there's a problem in the dimensions...

从技术上讲,关于perceptron_general的结构,当您向后执行第二个参数(= gradOutput)时,应该一张由2 x 1D张量构成的表(即每个gradOutput顶部并行表的分支),其内容类似于:

Technically speaking regarding the structure of perceptron_general when you perform a backward the 2nd argument (= gradOutput) should be a table made of 2 x 1D tensors (i.e. one gradOutput per branch of your top parallel table) which gives something like:

gradientWrtOutput = {
    torch.Tensor{realTarget[1]},
    torch.Tensor{realTarget[2]}
}

注意:在您的主要训练循环中出现另一个错误之后.

这篇关于Torch/Lua,如何在暹罗神经网络中正确实施小批量训练?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持IT屋!

查看全文
登录 关闭
扫码关注1秒登录
发送“验证码”获取 | 15天全站免登陆