具有多项式特征的内核岭和简单岭 [英] Kernel ridge and simple Ridge with Polynomial features

查看:32
本文介绍了具有多项式特征的内核岭和简单岭的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

具有多项式内核的Kernel Ridge(来自sklearn.kernel_ridge)与使用PolynomialFeatures + Ridge(来自sklearn.linear_model)有什么区别?

解决方案

差异在于特征计算.

What is the difference between Kernel Ridge (from sklearn.kernel_ridge) with polynomial kernel and using PolynomialFeatures + Ridge (from sklearn.linear_model)?

解决方案

The difference is in feature computation. PolynomialFeatures explicitly computes polynomial combinations between the input features up to the desired degree while KernelRidge(kernel='poly') only considers a polynomial kernel (a polynomial representation of feature dot products) which will be expressed in terms of the original features. This document provides a good overview in general.

Regarding the computation we can inspect the relevant parts from the source code:

The computation of the (training) kernel follows a similar procedure: compare Ridge and KernelRidge. The major difference is that Ridge explicitly considers the dot product between whatever (polynomial) features it has received while for KernelRidge these polynomial features are generated implicitly during the computation. For example consider a single feature x; with gamma = coef0 = 1 the KernelRidge computes (x**2 + 1)**2 == (x**4 + 2*x**2 + 1). If you consider now PolynomialFeatures this will provide features x**2, x, 1 and the corresponding dot product is x**4 + x**2 + 1. Hence the dot product differs by a term x**2. Of course we could rescale the poly-features to have x**2, sqrt(2)*x, 1 while with KernelRidge(kernel='poly') we don't have this kind of flexibility. On the other hand the difference probably doesn't matter (in most cases).

Note that also the computation of the dual coefficients is performed in a similar manner: Ridge and KernelRidge. Finally KernelRidge keeps the dual coefficients while Ridge directly computes the weights.

Let's see a small example:

import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import Ridge
from sklearn.kernel_ridge import KernelRidge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.utils.extmath import safe_sparse_dot

np.random.seed(20181001)

a, b = 1, 4
x = np.linspace(0, 2, 100).reshape(-1, 1)
y = a*x**2 + b*x + np.random.normal(scale=0.2, size=(100,1))

poly = PolynomialFeatures(degree=2, include_bias=True)
xp = poly.fit_transform(x)
print('We can see that the new features are now [1, x, x**2]:')
print(f'xp.shape: {xp.shape}')
print(f'xp[-5:]:\n{xp[-5:]}', end='\n\n')
# Scale the `x` columns so we obtain similar results.
xp[:, 1] *= np.sqrt(2)

ridge = Ridge(alpha=0, fit_intercept=False, solver='cholesky')
ridge.fit(xp, y)

krr = KernelRidge(alpha=0, kernel='poly', degree=2, gamma=1, coef0=1)
krr.fit(x, y)

# Let's try to reproduce some of the involved steps for the different models.
ridge_K = safe_sparse_dot(xp, xp.T)
krr_K = krr._get_kernel(x)
print('The computed kernels are (alomst) similar:')
print(f'Max. kernel difference: {np.abs(ridge_K - krr_K).max()}', end='\n\n')
print('Predictions slightly differ though:')
print(f'Max. difference: {np.abs(krr.predict(x) - ridge.predict(xp)).max()}', end='\n\n')

# Let's see if the fit changes if we provide `x**2, x, 1` instead of `x**2, sqrt(2)*x, 1`.
xp_2 = xp.copy()
xp_2[:, 1] /= np.sqrt(2)
ridge_2 = Ridge(alpha=0, fit_intercept=False, solver='cholesky')
ridge_2.fit(xp_2, y)
print('Using features "[x**2, x, 1]" instead of "[x**2, sqrt(2)*x, 1]" predictions are (almost) the same:')
print(f'Max. difference: {np.abs(ridge_2.predict(xp_2) - ridge.predict(xp)).max()}', end='\n\n')
print('Interpretability of the coefficients changes though:')
print(f'ridge.coef_[1:]: {ridge.coef_[0, 1:]}, ridge_2.coef_[1:]: {ridge_2.coef_[0, 1:]}')
print(f'ridge.coef_[1]*sqrt(2): {ridge.coef_[0, 1]*np.sqrt(2)}')
print(f'Compare with: a, b = ({a}, {b})')

plt.plot(x.ravel(), y.ravel(), 'o', color='skyblue', label='Data')
plt.plot(x.ravel(), ridge.predict(xp).ravel(), '-', label='Ridge', lw=3)
plt.plot(x.ravel(), krr.predict(x).ravel(), '--', label='KRR', lw=3)
plt.grid()
plt.legend()
plt.show()

From which we obtain:

We can see that the new features are now [x, x**2]:
xp.shape: (100, 3)
xp[-5:]:
[[1.         1.91919192 3.68329762]
 [1.         1.93939394 3.76124885]
 [1.         1.95959596 3.84001632]
 [1.         1.97979798 3.91960004]
 [1.         2.         4.        ]]

The computed kernels are (alomst) similar:
Max. kernel difference: 1.0658141036401503e-14

Predictions slightly differ though:
Max. difference: 0.04244651134471766

Using features "[x**2, x, 1]" instead of "[x**2, sqrt(2)*x, 1]" predictions are (almost) the same:
Max. difference: 7.15642822779472e-14

Interpretability of the coefficients changes though:
ridge.coef_[1:]: [2.73232239 1.08868872], ridge_2.coef_[1:]: [3.86408737 1.08868872]
ridge.coef_[1]*sqrt(2): 3.86408737392841
Compare with: a, b = (1, 4)

这篇关于具有多项式特征的内核岭和简单岭的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持IT屋!

查看全文
登录 关闭
扫码关注1秒登录
发送“验证码”获取 | 15天全站免登陆