混淆测试fftw3 - 泊松方程2d测试 [英] Confusion testing fftw3 - poisson equation 2d test

查看:179
本文介绍了混淆测试fftw3 - 泊松方程2d测试的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我无法解释/理解以下现象:
要测试fftw3我使用2d poisson测试用例:



laplacian(f ,y))= -g(x,y)与周期边界条件。在应用傅立叶变换到方程式后,我们得到:F(kx,ky)=如果我取g(x,y)= sin(x)+ sin(y),则G(kx,ky)/(kx 2 + ky 2)(1)



< (x,y)\in [0,2 \pi]我立即有f(x,y)= g(x,y)



我试图用fft获取:



我用g进行正向傅里叶变换计算g



最后,我用后向傅里叶变换计算f(不用忘记归一化1 /(nx *)),我们可以计算f的傅立叶变换。(b)



(例如,幅度为更糟糕的是,如果我尝试g(x,y)= sin(x)* sin(y),则N = 256是N = 512时获得的振幅的两倍)



< ,该曲线甚至没有相同的解的形式。



(注意,我必须改变方程; i在这种情况下除以2的拉普拉斯算子:(1)变为F(kx,ky)= 2 * G(kx,ky)/(kx 2 + ky 2)



这是代码:

  / * 
* fftw test - double precision
* /
#include< iostream>
#include< stdio.h>
#include< stdlib.h>
#include< math.h>
#include< fftw3.h>
using namespace std;

int main()
{
int N = 128;
int i,j;
double pi = 3.14159265359;
double * X,* Y;
X =(double *)malloc(N * sizeof(double));
Y =(double *)malloc(N * sizeof(double));
fftw_complex * out1,* in2,* out2,* in1;
fftw_plan p1,p2;
double L = 2. * pi;
double dx = L /(N-1);

in1 =(fftw_complex *)fftw_malloc(sizeof(fftw_complex)*(N * N));
out2 =(fftw_complex *)fftw_malloc(sizeof(fftw_complex)*(N * N));
out1 =(fftw_complex *)fftw_malloc(sizeof(fftw_complex)*(N * N));
in2 =(fftw_complex *)fftw_malloc(sizeof(fftw_complex)*(N * N));

p1 = fftw_plan_dft_2d(N,N,in1,out1,FFTW_FORWARD,FFTW_MEASURE);
p2 = fftw_plan_dft_2d(N,N,in2,out2,FFTW_BACKWARD,FFTW_MEASURE);

for(i = 0; i X [i] = -pi + i * dx;
for(j = 0; j Y [j] = - pi + j * dx;
in1 [i * N + j] [0] = sin(X [i])+ sin(Y [j] // row major ordering
// in1 [i * N + j] [0] = sin(X [i])* sin(Y [j]); //第二个测试用例
in1 [i * N + j] [1] = 0;
}
}

fftw_execute(p1); // FFT forward

for(i = 0; i for(j = 0; j < N * j + 1e-16);(3)N + j = 1。
in2 [i * N + j] [1] = out1 [i * N + j] [1] /(i * i + j * j + 1e-16)。
// in2 [i * N + j] [0] = 2 * out1 [i * N + j] [0] /(i * i + j * j + 1e-16) //第二测试用例
// in2 [i * N + j] [1] = 2 * out1 [i * N + j] [1] /(i * i + j * j + 1e- ;
}
}

fftw_execute(p2); // FFT backward

//检查计算结果

double erl1 = 0 .;
for(i = 0; i for(j = 0; j erl1 + = fabs(in1 [i * N + j] [0] -out2 [i * N + j] [0] / N / N)* dx * dx;
cout<< i<<<< j<< sin(X [i])+ sin(Y [j])<< out2 [i * N + j] [0] / N / N < endl; //>输出
}
}
cout<< erl1<< endl; // L1 error

fftw_destroy_plan(p1);
fftw_destroy_plan(p2);
fftw_free(out1);
fftw_free(out2);
fftw_free(in1);
fftw_free(in2);

return 0;
}



我在我的代码中找不到任何错误上周的fftw3库)和我没有看到一个问题的数学或者,但我不认为这是fft的错。因此我的困境。



任何帮助解决这个难题都会非常感激。



注意:



执行:./ a.out> output



并且我使用gnuplot绘制曲线:
(在gnuplot中)splotoutputu 1:2:4对于计算解)

解决方案

这里有一些小修改:




  • 您需要考虑所有小频率,包括负频率!索引 i 对应于频率 2PI i / N ,但也对应于频率 2PI )/ N 。在傅里叶空间中,数组的结束与开始一样重要!在我们的例子中,我们保持最小的频率:对于数组的前半部分,它是 2PI i / N ,在后半部分是2PI(iN)/ N。 p>


  • 当然,如Paul所说, N-1 应该是 N double dx = L /(N-1); => c $ c> N-1 不对应于连续的周期性信号。


  • 缩放...我是凭经验做的




我获得的结果更接近预期结果,对于这两种情况。这是代码:

  / * 
* fftw test - double precision
* /
#include< iostream>
#include< stdio.h>
#include< stdlib.h>
#include< math.h>
#include< fftw3.h>
using namespace std;

int main()
{
int N = 128;
int i,j;
double pi = 3.14159265359;
double * X,* Y;
X =(double *)malloc(N * sizeof(double));
Y =(double *)malloc(N * sizeof(double));
fftw_complex * output1,* in2,* out2,* in1;
fftw_plan p1,p2;
double L = 2. * pi;
double dx = L /(N);


in1 =(fftw_complex *)fftw_malloc(sizeof(fftw_complex)*(N * N));
out2 =(fftw_complex *)fftw_malloc(sizeof(fftw_complex)*(N * N));
out1 =(fftw_complex *)fftw_malloc(sizeof(fftw_complex)*(N * N));
in2 =(fftw_complex *)fftw_malloc(sizeof(fftw_complex)*(N * N));

p1 = fftw_plan_dft_2d(N,N,in1,out1,FFTW_FORWARD,FFTW_MEASURE);
p2 = fftw_plan_dft_2d(N,N,in2,out2,FFTW_BACKWARD,FFTW_MEASURE);

for(i = 0; i X [i] = --pi + i * dx;
for(j = 0; j Y [j] = - pi + j * dx;
in1 [i * N + j] [0] = sin(X [i])+ sin(Y [j] // row major ordering
// in1 [i * N + j] [0] = sin(X [i])* sin(Y [j]); //第二个测试用例
in1 [i * N + j] [1] = 0;
}
}

fftw_execute(p1); // FFT forward

for(i = 0; i for(j = 0; j < N; j ++){
double fact = 0;
in2 [i * N + j] [0] = 0;
in2 [i * N + j] [1] = 0;
if(2 * i fact =((double)i * i);
} else {
fact =((double)(N-i)*(N-i));
}
if(2 * j fact + =((double)j * j);
} else {
fact + =((double)(N-j)*(N-j));
}
if(fact!= 0){
in2 [i * N + j] [0] = out1 [i * N + j] [0]
in2 [i * N + j] [1] = out1 [i * N + j] [1]
} else {
in2 [i * N + j] [0] = 0;
in2 [i * N + j] [1] = 0;
}
// in2 [i * N + j] [0] = out1 [i * N + j] [0]
// in2 [i * N + j] [1] = out1 [i * N + j] [1]
// in2 [i * N + j] [0] = out1 [i * N + j] [0] *(1.0 /(i * i + 1e-16)+ 1.0 / 1e-16)+1.0 /((Ni)*(Ni)+ 1e-16)+1.0 /((Nj)*(Nj)+ 1e-16)
// in2 [i * N + j] [1] = out1 [i * N + j] [1] *(1.0 /(i * i + 1e-16)+ 1.0 / 1e-16)+1.0 /((Ni)*(Ni)+ 1e-16)+1.0 /((Nj)*(Nj)+ 1e-16)
// in2 [i * N + j] [0] = 2 * out1 [i * N + j] [0] /(i * i + j * j + 1e-16) //第二测试用例
// in2 [i * N + j] [1] = 2 * out1 [i * N + j] [1] /(i * i + j * j + 1e- ;
}
}

fftw_execute(p2); // FFT backward

//检查计算结果

double erl1 = 0 .;
for(i = 0; i for(j = 0; j erl1 + = fabs(in1 [i * N + j] [0] -out2 [i * N + j] [0] /(N * N))* dx * dx;
cout<< i<<<< j<< sin(X [i])+ sin(Y [j])<< out2 [i * N + j] [0] /(N * N)< endl; //>输出
// cout<< i<<<< j<< sin(X [i])* sin(Y [j])<< out2 [i * N + j] [0] /(N * N)< endl; //>输出
}
}
cout< erl1<< endl; // L1 error

fftw_destroy_plan(p1);
fftw_destroy_plan(p2);
fftw_free(out1);
fftw_free(out2);
fftw_free(in1);
fftw_free(in2);

return 0;
}

这段代码远非完美,它既不优化也不美观。但它几乎给出了预期的结果。



再见,


I am having trouble explaining/understanding the following phenomenon: To test fftw3 i am using the 2d poisson test case:

laplacian(f(x,y)) = - g(x,y) with periodic boundary conditions.

After applying the fourier transform to the equation we obtain : F(kx,ky) = G(kx,ky) /(kx² + ky²) (1)

if i take g(x,y) = sin (x) + sin(y) , (x,y) \in [0,2 \pi] i have immediately f(x,y) = g(x,y)

which is what i am trying to obtain with the fft :

i compute G from g with a forward Fourier transform

From this i can compute the Fourier transform of f with (1).

Finally, i compute f with the backward Fourier transform (without forgetting to normalize by 1/(nx*ny)).

In practice, the results are pretty bad?

(For instance, the amplitude for N = 256 is twice the amplitude obtained with N = 512)

Even worse, if i try g(x,y) = sin(x)*sin(y) , the curve has not even the same form of the solution.

(note that i must change the equation; i divide by two the laplacian in this case : (1) becomes F(kx,ky) = 2*G(kx,ky)/(kx²+ky²)

Here is the code:

/*
* fftw test -- double precision
*/
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <fftw3.h>
using namespace std;

int main()
{
 int N = 128;
 int i, j ;
 double pi = 3.14159265359;
 double *X, *Y  ; 
 X = (double*) malloc(N*sizeof(double));
   Y = (double*) malloc(N*sizeof(double));
   fftw_complex  *out1, *in2, *out2, *in1;
   fftw_plan     p1, p2;
   double L  = 2.*pi;
   double dx = L/(N - 1);

   in1 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) );
   out2 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) );
   out1 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) );
   in2 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) );

   p1 = fftw_plan_dft_2d(N, N, in1, out1, FFTW_FORWARD,FFTW_MEASURE ); 
   p2 = fftw_plan_dft_2d(N, N, in2, out2, FFTW_BACKWARD,FFTW_MEASURE);

   for(i = 0; i < N; i++){
       X[i] = -pi + i*dx ;
       for(j = 0; j < N; j++){
            Y[j] = -pi + j*dx ;
        in1[i*N + j][0] = sin(X[i]) + sin(Y[j]) ; // row major ordering
        //in1[i*N + j][0] = sin(X[i]) * sin(Y[j]) ; // 2nd test case
        in1[i*N + j][1] = 0 ; 
       }
   }

     fftw_execute(p1); // FFT forward 

     for ( i = 0; i < N; i++){   // f = g / ( kx² + ky² )  
       for( j = 0; j < N; j++){
         in2[i*N + j][0] = out1[i*N + j][0]/ (i*i+j*j+1e-16); 
         in2[i*N + j][1] = out1[i*N + j][1]/ (i*i+j*j+1e-16); 
         //in2[i*N + j][0] = 2*out1[i*N + j][0]/ (i*i+j*j+1e-16); // 2nd test case
         //in2[i*N + j][1] = 2*out1[i*N + j][1]/ (i*i+j*j+1e-16); 
       }
     }

     fftw_execute(p2); //FFT backward

     // checking the results computed

     double erl1 = 0.;
     for ( i = 0; i < N; i++) {
       for( j = 0; j < N; j++){
         erl1 += fabs( in1[i*N + j][0] -  out2[i*N + j][0]/N/N )*dx*dx; 
         cout<< i <<" "<< j<<" "<< sin(X[i])+sin(Y[j])<<" "<<  out2[i*N+j][0]/N/N <<" "<< endl; // > output
        }
      }
      cout<< erl1 << endl ;  // L1 error

      fftw_destroy_plan(p1);
      fftw_destroy_plan(p2);
      fftw_free(out1);
      fftw_free(out2);
      fftw_free(in1);
      fftw_free(in2);

      return 0;
    }

I can't find any (more) mistakes in my code (i installed the fftw3 library last week) and i don't see a problem with the maths either but i don't think it's the fft's fault. Hence my predicament. I am all out of ideas and all out of google as well.

Any help solving this puzzle would be greatly appreciated.

note :

compiling : g++ test.cpp -lfftw3 -lm

executing : ./a.out > output

and i use gnuplot in order to plot the curves : (in gnuplot ) splot "output" u 1:2:4 ( for the computed solution )

解决方案

Here are some little points to be modified :

  • You need to account for all small frequencies, including the negative ones ! Index i corresponds to the frequency 2PI i/N but also to the frequency 2PI (i-N)/N. In the Fourier space, the end of the array matters as much as the beginning ! In our case, we keep the smallest frequency : it's 2PI i/N for the first half of the array, and 2PI(i-N)/N on the second half.

  • Of course, as Paul said, N-1 should be Nin double dx = L/(N - 1); => double dx = L/(N ); N-1 does not correspond to a continious periodic signal. It woud be hard to use it as a test case...

  • Scaling...I did it empirically

The result i obtain is closer to the expected one, for both cases. Here is the code :

    /*
 * fftw test -- double precision
 */
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <fftw3.h>
using namespace std;

int main()
{
    int N = 128;
    int i, j ;
    double pi = 3.14159265359;
    double *X, *Y  ; 
    X = (double*) malloc(N*sizeof(double));
    Y = (double*) malloc(N*sizeof(double));
    fftw_complex  *out1, *in2, *out2, *in1;
    fftw_plan     p1, p2;
    double L  = 2.*pi;
    double dx = L/(N );


    in1 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) );
    out2 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) );
    out1 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) );
    in2 = (fftw_complex*) fftw_malloc(sizeof(fftw_complex)*(N*N) );

    p1 = fftw_plan_dft_2d(N, N, in1, out1, FFTW_FORWARD,FFTW_MEASURE ); 
    p2 = fftw_plan_dft_2d(N, N, in2, out2, FFTW_BACKWARD,FFTW_MEASURE);

    for(i = 0; i < N; i++){
        X[i] = -pi + i*dx ;
        for(j = 0; j < N; j++){
            Y[j] = -pi + j*dx ;
            in1[i*N + j][0] = sin(X[i]) + sin(Y[j]) ; // row major ordering
            //  in1[i*N + j][0] = sin(X[i]) * sin(Y[j]) ; // 2nd test case
            in1[i*N + j][1] = 0 ; 
        }
    }

    fftw_execute(p1); // FFT forward 

    for ( i = 0; i < N; i++){   // f = g / ( kx² + ky² )  
        for( j = 0; j < N; j++){
            double fact=0;
            in2[i*N + j][0]=0;
            in2[i*N + j][1]=0;
            if(2*i<N){
                fact=((double)i*i);
            }else{
                fact=((double)(N-i)*(N-i));
            }
            if(2*j<N){
                fact+=((double)j*j);
            }else{
                fact+=((double)(N-j)*(N-j));
            }
            if(fact!=0){
                in2[i*N + j][0] = out1[i*N + j][0]/fact;
                in2[i*N + j][1] = out1[i*N + j][1]/fact;
            }else{
                in2[i*N + j][0] = 0;
                in2[i*N + j][1] = 0;
            }
            //in2[i*N + j][0] = out1[i*N + j][0];
            //in2[i*N + j][1] = out1[i*N + j][1];
            //  in2[i*N + j][0] = out1[i*N + j][0]*(1.0/(i*i+1e-16)+1.0/(j*j+1e-16)+1.0/((N-i)*(N-i)+1e-16)+1.0/((N-j)*(N-j)+1e-16))*N*N; 
            //  in2[i*N + j][1] = out1[i*N + j][1]*(1.0/(i*i+1e-16)+1.0/(j*j+1e-16)+1.0/((N-i)*(N-i)+1e-16)+1.0/((N-j)*(N-j)+1e-16))*N*N; 
            //in2[i*N + j][0] = 2*out1[i*N + j][0]/ (i*i+j*j+1e-16); // 2nd test case
            //in2[i*N + j][1] = 2*out1[i*N + j][1]/ (i*i+j*j+1e-16); 
        }
    }

    fftw_execute(p2); //FFT backward

    // checking the results computed

    double erl1 = 0.;
    for ( i = 0; i < N; i++) {
        for( j = 0; j < N; j++){
            erl1 += fabs( in1[i*N + j][0] -  out2[i*N + j][0]/(N*N))*dx*dx; 
            cout<< i <<" "<< j<<" "<< sin(X[i])+sin(Y[j])<<" "<<  out2[i*N+j][0]/(N*N) <<" "<< endl; // > output
            //  cout<< i <<" "<< j<<" "<< sin(X[i])*sin(Y[j])<<" "<<  out2[i*N+j][0]/(N*N) <<" "<< endl; // > output
        }
    }
    cout<< erl1 << endl ;  // L1 error

    fftw_destroy_plan(p1);
    fftw_destroy_plan(p2);
    fftw_free(out1);
    fftw_free(out2);
    fftw_free(in1);
    fftw_free(in2);

    return 0;
}

This code is far from being perfect, it is neither optimized nor beautiful. But it gives almost what is expected.

Bye,

这篇关于混淆测试fftw3 - 泊松方程2d测试的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持IT屋!

查看全文
登录 关闭
扫码关注1秒登录
发送“验证码”获取 | 15天全站免登陆