使用 DQN 增加 Cartpole-v0 损失 [英] Cartpole-v0 loss increasing using DQN

查看:84
本文介绍了使用 DQN 增加 Cartpole-v0 损失的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试训练 DQN 来解决健身房的 Cartpole 问题.出于某种原因,

tau=10

tau=100

tau=1000

tau=10000

以下是您的代码的修改版本.

随机导入导入数学导入 matplotlib.pyplot 作为 plt进口火炬从火炬进口nn导入 torch.nn.functional 作为 F进口健身房类 DQN(nn.Module):def __init__(self, input_dim, output_dim):super(DQN, self).__init__()self.linear1 = nn.Linear(input_dim, 16)self.linear2 = nn.Linear(16, 32)self.linear3 = nn.Linear(32, 32)self.linear4 = nn.Linear(32, output_dim)def forward(self, x):x = F.relu(self.linear1(x))x = F.relu(self.linear2(x))x = F.relu(self.linear3(x))返回 self.linear4(x)final_epsilon = 0.05initial_epsilon = 1epsilon_decay = 5000全局步骤_done步骤_完成 = 0def select_action(state):全局步骤_done样本 = random.random()eps_threshold = final_epsilon + (initial_epsilon - final_epsilon) * \math.exp(-1.*steps_done/epsilon_decay)如果样本>eps_阈值:使用 torch.no_grad():state = torch.Tensor(状态)步骤_完成 += 1q_calc = 模型(状态)node_activated = int(torch.argmax(q_calc))返回 node_activated别的:node_activated = random.randint(0,1)步骤_完成 += 1返回 node_activatedclass ReplayMemory(object): # Stores [state, reward, action, next_state, done]def __init__(self,容量):自我能力 = 能力self.memory = [[],[],[],[],[]]定义推送(自我,数据):"""保存过渡."""对于 idx,指向 enumerate(data):#print("Col {} appended {}".format(idx, point))self.memory[idx].append(point)定义样本(自我,batch_size):行 = random.sample(range(0, len(self.memory[0])), batch_size)经验 = [[],[],[],[],[]]对于行中的行:对于范围(5)中的col:经验[col].append(self.memory[col][row])返回经验def __len__(self):返回 len(self.memory[0])input_dim, output_dim = 4, 2模型 = DQN(input_dim, output_dim)target_net = DQN(input_dim, output_dim)target_net.load_state_dict(model.state_dict())target_net.eval()头 = 100折扣 = 0.99学习率 = 1e-4优化器 = torch.optim.Adam(model.parameters(), lr=learning_rate)内存 = ReplayMemory(65536)BATCH_SIZE = 128定义优化模型():如果 len(内存)

这是您的绘图代码的结果.

tau=100

tau=10000

Hi I'm trying to train a DQN to solve gym's Cartpole problem. For some reason the Loss looks like this (orange line). Can y'all take a look at my code and help with this? I've played around with the hyperparameters a decent bit so I don't think they're the issue here.

class DQN(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(DQN, self).__init__()
        self.linear1 = nn.Linear(input_dim, 16)
        self.linear2 = nn.Linear(16, 32)
        self.linear3 = nn.Linear(32, 32)
        self.linear4 = nn.Linear(32, output_dim)


    def forward(self, x):
        x = F.relu(self.linear1(x))
        x = F.relu(self.linear2(x))
        x = F.relu(self.linear3(x))
        return self.linear4(x)


final_epsilon = 0.05
initial_epsilon = 1
epsilon_decay = 5000
global steps_done
steps_done = 0


def select_action(state):
    global steps_done
    sample = random.random()
    eps_threshold = final_epsilon + (initial_epsilon - final_epsilon) * \
                    math.exp(-1. * steps_done / epsilon_decay)
    if sample > eps_threshold:
        with torch.no_grad():
            state = torch.Tensor(state)
            steps_done += 1
            q_calc = model(state)
            node_activated = int(torch.argmax(q_calc))
            return node_activated
    else:
        node_activated = random.randint(0,1)
        steps_done += 1
        return node_activated


class ReplayMemory(object): # Stores [state, reward, action, next_state, done]

    def __init__(self, capacity):
        self.capacity = capacity
        self.memory = [[],[],[],[],[]]

    def push(self, data):
        """Saves a transition."""
        for idx, point in enumerate(data):
            #print("Col {} appended {}".format(idx, point))
            self.memory[idx].append(point)

    def sample(self, batch_size):
        rows = random.sample(range(0, len(self.memory[0])), batch_size)
        experiences = [[],[],[],[],[]]
        for row in rows:
            for col in range(5):
                experiences[col].append(self.memory[col][row])
        return experiences

    def __len__(self):
        return len(self.memory[0])


input_dim, output_dim = 4, 2
model = DQN(input_dim, output_dim)
target_net = DQN(input_dim, output_dim)
target_net.load_state_dict(model.state_dict())
target_net.eval()
tau = 2
discount = 0.99

learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

memory = ReplayMemory(65536)
BATCH_SIZE = 128


def optimize_model():
    if len(memory) < BATCH_SIZE:
        return 0
    experiences = memory.sample(BATCH_SIZE)
    state_batch = torch.Tensor(experiences[0])
    action_batch = torch.LongTensor(experiences[1]).unsqueeze(1)
    reward_batch = torch.Tensor(experiences[2])
    next_state_batch = torch.Tensor(experiences[3])
    done_batch = experiences[4]

    pred_q = model(state_batch).gather(1, action_batch)

    next_state_q_vals = torch.zeros(BATCH_SIZE)

    for idx, next_state in enumerate(next_state_batch):
        if done_batch[idx] == True:
            next_state_q_vals[idx] = -1
        else:
            # .max in pytorch returns (values, idx), we only want vals
            next_state_q_vals[idx] = (target_net(next_state_batch[idx]).max(0)[0]).detach()


    better_pred = (reward_batch + next_state_q_vals).unsqueeze(1)

    loss = F.smooth_l1_loss(pred_q, better_pred)
    optimizer.zero_grad()
    loss.backward()
    for param in model.parameters():
        param.grad.data.clamp_(-1, 1)
    optimizer.step()
    return loss


points = []
losspoints = []

#save_state = torch.load("models/DQN_target_11.pth")
#model.load_state_dict(save_state['state_dict'])
#optimizer.load_state_dict(save_state['optimizer'])



env = gym.make('CartPole-v0')
for i_episode in range(5000):
    observation = env.reset()
    episode_loss = 0
    if episode % tau == 0:
        target_net.load_state_dict(model.state_dict())
    for t in range(1000):
        #env.render()
        state = observation
        action = select_action(observation)
        observation, reward, done, _ = env.step(action)

        if done:
            next_state = [0,0,0,0]
        else:
            next_state = observation

        memory.push([state, action, reward, next_state, done])
        episode_loss = episode_loss + float(optimize_model(i_episode))
        if done:
            points.append((i_episode, t+1))
            print("Episode {} finished after {} timesteps".format(i_episode, t+1))
            print("Avg Loss: ", episode_loss / (t+1))
            losspoints.append((i_episode, episode_loss / (t+1)))
            if (i_episode % 100 == 0):
                eps = final_epsilon + (initial_epsilon - final_epsilon) * \
                    math.exp(-1. * steps_done / epsilon_decay)
                print(eps)
            if ((i_episode+1) % 5001 == 0):
                save = {'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict()}
                torch.save(save, "models/DQN_target_" + str(i_episode // 5000) + ".pth")
            break
env.close()




x = [coord[0] * 100 for coord in points]
y = [coord[1] for coord in points]

x2 = [coord[0] * 100 for coord in losspoints]
y2 = [coord[1] for coord in losspoints]

plt.plot(x, y)
plt.plot(x2, y2)
plt.show()

I basically followed the tutorial pytorch has, except using the state returned by the env rather than the pixels. I also changed the replay memory because I was having issues there. Other than that, I left everything else pretty much the same.

Edit:

I tried overfitting on a small batch and the Loss looks like this without updating the target net and this when updating it

Edit 2:

This is definitely an issue with the target net, I tried removing it and loss seemed to not increase exponentially

解决方案

Your tau value is too small, small target network update cause DQN traning unstable. You can try to use 1000 (OpenAI Baseline's DQN example) or 10000 (Deepmind's Nature paper).

In Deepmind's 2015 Nature paper, it states that:

The second modification to online Q-learning aimed at further improving the stability of our method with neural networks is to use a separate network for generating the traget yj in the Q-learning update. More precisely, every C updates we clone the network Q to obtain a target network Q' and use Q' for generating the Q-learning targets yj for the following C updates to Q. This modification makes the algorithm more stable compared to standard online Q-learning, where an update that increases Q(st,at) often also increases Q(st+1, a) for all a and hence also increases the target yj, possibly leading to oscillations or divergence of the policy. Generating the targets using the older set of parameters adds a delay between the time an update to Q is made and the time the update affects the targets yj, making divergence or oscillations much more unlikely.

Human-level control through deep reinforcement learning, Mnih et al., 2015

I've run your code with settings of tau=2, tau=10, tau=100, tau=1000 and tau=10000. The update frequency of tau=100 solves the problem (reach maximum steps of 200).

tau=2

tau=10

tau=100

tau=1000

tau=10000

Below is the modified version of your code.

import random
import math
import matplotlib.pyplot as plt

import torch
from torch import nn
import torch.nn.functional as F
import gym

class DQN(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(DQN, self).__init__()
        self.linear1 = nn.Linear(input_dim, 16)
        self.linear2 = nn.Linear(16, 32)
        self.linear3 = nn.Linear(32, 32)
        self.linear4 = nn.Linear(32, output_dim)


    def forward(self, x):
        x = F.relu(self.linear1(x))
        x = F.relu(self.linear2(x))
        x = F.relu(self.linear3(x))
        return self.linear4(x)


final_epsilon = 0.05
initial_epsilon = 1
epsilon_decay = 5000
global steps_done
steps_done = 0


def select_action(state):
    global steps_done
    sample = random.random()
    eps_threshold = final_epsilon + (initial_epsilon - final_epsilon) * \
                    math.exp(-1. * steps_done / epsilon_decay)
    if sample > eps_threshold:
        with torch.no_grad():
            state = torch.Tensor(state)
            steps_done += 1
            q_calc = model(state)
            node_activated = int(torch.argmax(q_calc))
            return node_activated
    else:
        node_activated = random.randint(0,1)
        steps_done += 1
        return node_activated


class ReplayMemory(object): # Stores [state, reward, action, next_state, done]

    def __init__(self, capacity):
        self.capacity = capacity
        self.memory = [[],[],[],[],[]]

    def push(self, data):
        """Saves a transition."""
        for idx, point in enumerate(data):
            #print("Col {} appended {}".format(idx, point))
            self.memory[idx].append(point)

    def sample(self, batch_size):
        rows = random.sample(range(0, len(self.memory[0])), batch_size)
        experiences = [[],[],[],[],[]]
        for row in rows:
            for col in range(5):
                experiences[col].append(self.memory[col][row])
        return experiences

    def __len__(self):
        return len(self.memory[0])


input_dim, output_dim = 4, 2
model = DQN(input_dim, output_dim)
target_net = DQN(input_dim, output_dim)
target_net.load_state_dict(model.state_dict())
target_net.eval()
tau = 100
discount = 0.99

learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

memory = ReplayMemory(65536)
BATCH_SIZE = 128


def optimize_model():
    if len(memory) < BATCH_SIZE:
        return 0
    experiences = memory.sample(BATCH_SIZE)
    state_batch = torch.Tensor(experiences[0])
    action_batch = torch.LongTensor(experiences[1]).unsqueeze(1)
    reward_batch = torch.Tensor(experiences[2])
    next_state_batch = torch.Tensor(experiences[3])
    done_batch = experiences[4]

    pred_q = model(state_batch).gather(1, action_batch)

    next_state_q_vals = torch.zeros(BATCH_SIZE)

    for idx, next_state in enumerate(next_state_batch):
        if done_batch[idx] == True:
            next_state_q_vals[idx] = -1
        else:
            # .max in pytorch returns (values, idx), we only want vals
            next_state_q_vals[idx] = (target_net(next_state_batch[idx]).max(0)[0]).detach()


    better_pred = (reward_batch + next_state_q_vals).unsqueeze(1)

    loss = F.smooth_l1_loss(pred_q, better_pred)
    optimizer.zero_grad()
    loss.backward()
    for param in model.parameters():
        param.grad.data.clamp_(-1, 1)
    optimizer.step()
    return loss


points = []
losspoints = []

#save_state = torch.load("models/DQN_target_11.pth")
#model.load_state_dict(save_state['state_dict'])
#optimizer.load_state_dict(save_state['optimizer'])



env = gym.make('CartPole-v0')
for i_episode in range(5000):
    observation = env.reset()
    episode_loss = 0
    if i_episode % tau == 0:
        target_net.load_state_dict(model.state_dict())
    for t in range(1000):
        #env.render()
        state = observation
        action = select_action(observation)
        observation, reward, done, _ = env.step(action)

        if done:
            next_state = [0,0,0,0]
        else:
            next_state = observation

        memory.push([state, action, reward, next_state, done])
        episode_loss = episode_loss + float(optimize_model())
        if done:
            points.append((i_episode, t+1))
            print("Episode {} finished after {} timesteps".format(i_episode, t+1))
            print("Avg Loss: ", episode_loss / (t+1))
            losspoints.append((i_episode, episode_loss / (t+1)))
            if (i_episode % 100 == 0):
                eps = final_epsilon + (initial_epsilon - final_epsilon) * \
                    math.exp(-1. * steps_done / epsilon_decay)
                print(eps)
            if ((i_episode+1) % 5001 == 0):
                save = {'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict()}
                torch.save(save, "models/DQN_target_" + str(i_episode // 5000) + ".pth")
            break
env.close()




x = [coord[0] * 100 for coord in points]
y = [coord[1] for coord in points]

x2 = [coord[0] * 100 for coord in losspoints]
y2 = [coord[1] for coord in losspoints]

plt.plot(x, y)
plt.plot(x2, y2)
plt.show()

Here's the result of your plotting code.

tau=100

tau=10000

这篇关于使用 DQN 增加 Cartpole-v0 损失的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持IT屋!

查看全文
登录 关闭
扫码关注1秒登录
发送“验证码”获取 | 15天全站免登陆