使用ILU预调节器的常规最低残留量(GMRES) [英] General Minimum RESidual (GMRES) with ILU preconditioner

查看:162
本文介绍了使用ILU预调节器的常规最低残留量(GMRES)的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试在我编写的GMRES代码中实现ILU预处理器(以解决线性系统Ax = b.我正在尝试使用尺寸为25x25的简单三对角SPD矩阵.如您所见,我m使用spilu方法计算预处理器,代码正在运行,没有错误,但是解决方案显然是错误的,因为在代码末尾,我正在打印b的范数和乘积A * x的范数.几乎不一样.. 该代码无需预调节器即可运行良好,并且对于同一矩阵,经过13次迭代收敛.

这是我遵循的代码

import numpy as np
import scipy as sp
import matplotlib.pyplot as plt

'Size controller'

matrixSize =25

'Building a tri-diagonal matrix'

def Atridiag(val_0, val_sup, val_inf, mSize):
    cen     = np.ones((1, mSize))*val_0
    sup     = np.ones((1, mSize-1))*val_sup
    inf     = np.ones((1, mSize-1))*val_inf
    diag_cen  = np.diagflat(cen, 0)
    diag_sup  = np.diagflat(sup, 1)
    diag_inf  = np.diagflat(inf, -1)
    return diag_cen + diag_sup + diag_inf

A = Atridiag(2, -1, -1, matrixSize)

A = sp.sparse.csc_matrix (A)

'Plot matrix sparsity'

plt.clf()
plt.spy(A, marker ='.', markersize=2)
plt.show()


'random b and x0 vectors'

b = np.matrix(np.ones((matrixSize, 1)))
x = np.matrix(np.ones((matrixSize, 1)))

'Incomplete LU'

M = sp.sparse.linalg.dsolve.spilu(A)
M1 = lambda x: M.solve(x)
M2=sp.sparse.linalg.LinearOperator((matrixSize,matrixSize),M1)


'Initial Data'

nmax_iter = 30
rstart = 2
tol = 1e-7
e = np.zeros((nmax_iter + 1, 1))
rr = 1

'Starting GMRES'

for rs in range (0, rstart+1):

    'first check on residual'

    if rr < tol :
        break

    else:

        r0 = (b - A.dot(x))
        betha = np.linalg.norm(r0)
        e[0] = betha
        H = np.zeros((nmax_iter + 1, nmax_iter))
        V = np.zeros((matrixSize, nmax_iter+1))
        V[:, 0:1] = r0/betha

    for k in range (1, nmax_iter+1):

        'Appling the Preconditioner'

        t = A.dot(V[:, k-1])
        V[:, k] = M2.matvec(t)

        'Ortogonalizzazione GS'

        for j in range (k):
            H[j, k-1] = np.dot(V[:, k].T, V[:, j])
            V[:, k] = V[:, k] - (np.dot(H[j, k-1], V[:, j]))

        H[k, k-1] = np.linalg.norm(V[:, k])
        V[:, k] = V[:, k] / H[k, k-1] 

        'QR Decomposition'

        n=k
        Q = np.zeros((n+1, n))
        R = np.zeros((n, n))
        R[0, 0] = np.linalg.norm(H[0:n+2, 0])
        Q[:, 0] = H[0:n+1, 0] / R[0,0]
        for j in range (0, n+1):
            t = H[0:n+1, j-1]
            for i in range (0, j-1):
                R[i, j-1] = np.dot(Q[:, i], t)
                t = t - np.dot(R[i, j-1], Q[:, i])
            R[j-1, j-1] = np.linalg.norm(t)
            Q[:, j-1] = t / R[j-1, j-1]

        g = np.dot(Q.T, e[0:k+1]) 

        Z = np.dot(np.linalg.inv(R), g)

        Res = e[0:n] - np.dot(H[0:n, 0:n], Z[0:n])
        rr = np.linalg.norm(Res)

        'second check on residual'

        if rr < tol:
            break

    'Updating the solution'    

    x = x + np.dot(V[:, 0:k], Z)



print(sp.linalg.norm(b))
print(sp.linalg.norm(np.dot(A.todense(),x)))

真的希望有人能弄清楚!

解决方案

也许为时已晚,但供以后参考:

更新x时,您忘记了乘以调节器:

x = x + M2.dot(np.dot(V[:, 0:k], Z)    # M2.matvec() works the same

此处

通过此修复程序,该算法将在1次迭代中收敛.


其他评论:

  • 您可以直接执行:M2 = sp.sparse.linalg.LinearOperator((matrixSize,matrixSize),M.solve)
  • 最后,要比较Axb,最好打印出差异(残差),因为您会得到更加精确的结果:print(sp.linalg.norm(b - np.dot(A.todense(),x)))

I'm trying to implement the ILU preconditioner in this GMRES code I wrote (in order to solve the linear sistem Ax = b. I'm trying with an easy tridiagonal SPD matrix of dimension 25x25. As you can see I'm calculating the preconditioner with spilu method. The code is running without error, but the solution is clearly wrong since, at the end of the code, I'm printing the norm of b and the norm of the product A*x. They are not nearly the same.. The code Run fine without preconditioner and converge with 13 iteration for the same matrix.

This is the code I followed

import numpy as np
import scipy as sp
import matplotlib.pyplot as plt

'Size controller'

matrixSize =25

'Building a tri-diagonal matrix'

def Atridiag(val_0, val_sup, val_inf, mSize):
    cen     = np.ones((1, mSize))*val_0
    sup     = np.ones((1, mSize-1))*val_sup
    inf     = np.ones((1, mSize-1))*val_inf
    diag_cen  = np.diagflat(cen, 0)
    diag_sup  = np.diagflat(sup, 1)
    diag_inf  = np.diagflat(inf, -1)
    return diag_cen + diag_sup + diag_inf

A = Atridiag(2, -1, -1, matrixSize)

A = sp.sparse.csc_matrix (A)

'Plot matrix sparsity'

plt.clf()
plt.spy(A, marker ='.', markersize=2)
plt.show()


'random b and x0 vectors'

b = np.matrix(np.ones((matrixSize, 1)))
x = np.matrix(np.ones((matrixSize, 1)))

'Incomplete LU'

M = sp.sparse.linalg.dsolve.spilu(A)
M1 = lambda x: M.solve(x)
M2=sp.sparse.linalg.LinearOperator((matrixSize,matrixSize),M1)


'Initial Data'

nmax_iter = 30
rstart = 2
tol = 1e-7
e = np.zeros((nmax_iter + 1, 1))
rr = 1

'Starting GMRES'

for rs in range (0, rstart+1):

    'first check on residual'

    if rr < tol :
        break

    else:

        r0 = (b - A.dot(x))
        betha = np.linalg.norm(r0)
        e[0] = betha
        H = np.zeros((nmax_iter + 1, nmax_iter))
        V = np.zeros((matrixSize, nmax_iter+1))
        V[:, 0:1] = r0/betha

    for k in range (1, nmax_iter+1):

        'Appling the Preconditioner'

        t = A.dot(V[:, k-1])
        V[:, k] = M2.matvec(t)

        'Ortogonalizzazione GS'

        for j in range (k):
            H[j, k-1] = np.dot(V[:, k].T, V[:, j])
            V[:, k] = V[:, k] - (np.dot(H[j, k-1], V[:, j]))

        H[k, k-1] = np.linalg.norm(V[:, k])
        V[:, k] = V[:, k] / H[k, k-1] 

        'QR Decomposition'

        n=k
        Q = np.zeros((n+1, n))
        R = np.zeros((n, n))
        R[0, 0] = np.linalg.norm(H[0:n+2, 0])
        Q[:, 0] = H[0:n+1, 0] / R[0,0]
        for j in range (0, n+1):
            t = H[0:n+1, j-1]
            for i in range (0, j-1):
                R[i, j-1] = np.dot(Q[:, i], t)
                t = t - np.dot(R[i, j-1], Q[:, i])
            R[j-1, j-1] = np.linalg.norm(t)
            Q[:, j-1] = t / R[j-1, j-1]

        g = np.dot(Q.T, e[0:k+1]) 

        Z = np.dot(np.linalg.inv(R), g)

        Res = e[0:n] - np.dot(H[0:n, 0:n], Z[0:n])
        rr = np.linalg.norm(Res)

        'second check on residual'

        if rr < tol:
            break

    'Updating the solution'    

    x = x + np.dot(V[:, 0:k], Z)



print(sp.linalg.norm(b))
print(sp.linalg.norm(np.dot(A.todense(),x)))

Really Hope somebody can figure it out!!

解决方案

Maybe it's too late, but for future reference :

You forgot to multiply by the conditioner when updating x :

x = x + M2.dot(np.dot(V[:, 0:k], Z)    # M2.matvec() works the same

See here

With that fix, the algorithm converges in 1 iteration.


Other comments:

  • You can directly do : M2 = sp.sparse.linalg.LinearOperator((matrixSize,matrixSize),M.solve)
  • At the end, to compare Ax and b, it's better to print the difference (residual) because you will get a much more precise result: print(sp.linalg.norm(b - np.dot(A.todense(),x)))

这篇关于使用ILU预调节器的常规最低残留量(GMRES)的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持IT屋!

查看全文
登录 关闭
扫码关注1秒登录
发送“验证码”获取 | 15天全站免登陆