Python旅行推销员贪婪算法 [英] Python Traveling Salesman Greedy Algorithm

查看:174
本文介绍了Python旅行推销员贪婪算法的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

所以我为旅行商问题创建了一个排序,然后通过x坐标和y坐标进行排序。

So I have created a sort for my traveling salesman problem and I con sort by the x-coordinates and the y-coordinates.

我正在尝试实现一个

此外,每个点都在矩阵城市中实例化,例如[0,3,4],其中0是标题,3是x坐标,4是y坐标。

Also, each point is instantiated in the matrix city such as [0,3,4] where 0 is the header, 3 is the x coordinate, and 4 is the y coordinate.

这是我的程序,您应该可以运行该程序。主要问题是我的算法无法正常工作,我需要将其修复为有效的贪心算法的帮助。您可以在代码结尾处找到该算法。

Here is my program which you should be able to run. The main problem is that my algorithm isn't working and I need help fixing it to a working greedy algorithm. You can find the algorithm near the end of the code.

http: //pastebin.com/ABQ3x0PG

这是您将需要从中获取输入信息的文本文件。

This is the text file you will need which it takes the input from.

http://pastebin.com/c1UQzqEB

推荐答案

旅行商问题(TSP)是组合优化
问题,其中给出了一张地图(一组城市及其位置),一个
希望找到一种以使
的旅行距离最小的方式来访问所有城市的订单。

The Traveling Salesman Problem (TSP) is a combinatorial optimization problem, where given a map (a set of cities and their positions), one wants to find an order for visiting all the cities in such a way that the travel distance is minimal.

我建议先解决tsp,然后再解决

I would suggest solving the tsp and then solve the visual stuff.

以下代码包含一组函数来说明:
-TSP的构造启发式
-先前构造的改进启发式解决方案
-本地搜​​索和随机启动本地搜索。

Following code contains a set of functions to illustrate: - construction heuristics for the TSP - improvement heuristics for a previously constructed solution - local search, and random-start local search.

import math
import random


def distL2((x1,y1), (x2,y2)):
    """Compute the L2-norm (Euclidean) distance between two points.

    The distance is rounded to the closest integer, for compatibility
    with the TSPLIB convention.

    The two points are located on coordinates (x1,y1) and (x2,y2),
    sent as parameters"""
    xdiff = x2 - x1
    ydiff = y2 - y1
    return int(math.sqrt(xdiff*xdiff + ydiff*ydiff) + .5)


def distL1((x1,y1), (x2,y2)):
    """Compute the L1-norm (Manhattan) distance between two points.

    The distance is rounded to the closest integer, for compatibility
    with the TSPLIB convention.

    The two points are located on coordinates (x1,y1) and (x2,y2),
    sent as parameters"""
    return int(abs(x2-x1) + abs(y2-y1)+.5)


def mk_matrix(coord, dist):
    """Compute a distance matrix for a set of points.

    Uses function 'dist' to calculate distance between
    any two points.  Parameters:
    -coord -- list of tuples with coordinates of all points, [(x1,y1),...,(xn,yn)]
    -dist -- distance function
    """
    n = len(coord)
    D = {}      # dictionary to hold n times n matrix
    for i in range(n-1):
        for j in range(i+1,n):
            (x1,y1) = coord[i]
            (x2,y2) = coord[j]
            D[i,j] = dist((x1,y1), (x2,y2))
            D[j,i] = D[i,j]
    return n,D

def read_tsplib(filename):
    "basic function for reading a TSP problem on the TSPLIB format"
    "NOTE: only works for 2D euclidean or manhattan distances"
    f = open(filename, 'r');

    line = f.readline()
    while line.find("EDGE_WEIGHT_TYPE") == -1:
        line = f.readline()

    if line.find("EUC_2D") != -1:
        dist = distL2
    elif line.find("MAN_2D") != -1:
        dist = distL1
    else:
        print "cannot deal with non-euclidean or non-manhattan distances"
        raise Exception

    while line.find("NODE_COORD_SECTION") == -1:
        line = f.readline()

    xy_positions = []
    while 1:
        line = f.readline()
        if line.find("EOF") != -1: break
        (i,x,y) = line.split()
        x = float(x)
        y = float(y)
        xy_positions.append((x,y))

    n,D = mk_matrix(xy_positions, dist)
    return n, xy_positions, D


def mk_closest(D, n):
    """Compute a sorted list of the distances for each of the nodes.

    For each node, the entry is in the form [(d1,i1), (d2,i2), ...]
    where each tuple is a pair (distance,node).
    """
    C = []
    for i in range(n):
        dlist = [(D[i,j], j) for j in range(n) if j != i]
        dlist.sort()
        C.append(dlist)
    return C


def length(tour, D):
    """Calculate the length of a tour according to distance matrix 'D'."""
    z = D[tour[-1], tour[0]]    # edge from last to first city of the tour
    for i in range(1,len(tour)):
        z += D[tour[i], tour[i-1]]      # add length of edge from city i-1 to i
    return z


def randtour(n):
    """Construct a random tour of size 'n'."""
    sol = range(n)      # set solution equal to [0,1,...,n-1]
    random.shuffle(sol) # place it in a random order
    return sol


def nearest(last, unvisited, D):
    """Return the index of the node which is closest to 'last'."""
    near = unvisited[0]
    min_dist = D[last, near]
    for i in unvisited[1:]:
        if D[last,i] < min_dist:
            near = i
            min_dist = D[last, near]
    return near


def nearest_neighbor(n, i, D):
    """Return tour starting from city 'i', using the Nearest Neighbor.

    Uses the Nearest Neighbor heuristic to construct a solution:
    - start visiting city i
    - while there are unvisited cities, follow to the closest one
    - return to city i
    """
    unvisited = range(n)
    unvisited.remove(i)
    last = i
    tour = [i]
    while unvisited != []:
        next = nearest(last, unvisited, D)
        tour.append(next)
        unvisited.remove(next)
        last = next
    return tour



def exchange_cost(tour, i, j, D):
    """Calculate the cost of exchanging two arcs in a tour.

    Determine the variation in the tour length if
    arcs (i,i+1) and (j,j+1) are removed,
    and replaced by (i,j) and (i+1,j+1)
    (note the exception for the last arc).

    Parameters:
    -t -- a tour
    -i -- position of the first arc
    -j>i -- position of the second arc
    """
    n = len(tour)
    a,b = tour[i],tour[(i+1)%n]
    c,d = tour[j],tour[(j+1)%n]
    return (D[a,c] + D[b,d]) - (D[a,b] + D[c,d])


def exchange(tour, tinv, i, j):
    """Exchange arcs (i,i+1) and (j,j+1) with (i,j) and (i+1,j+1).

    For the given tour 't', remove the arcs (i,i+1) and (j,j+1) and
    insert (i,j) and (i+1,j+1).

    This is done by inverting the sublist of cities between i and j.
    """
    n = len(tour)
    if i>j:
        i,j = j,i
    assert i>=0 and i<j-1 and j<n
    path = tour[i+1:j+1]
    path.reverse()
    tour[i+1:j+1] = path
    for k in range(i+1,j+1):
        tinv[tour[k]] = k


def improve(tour, z, D, C):
    """Try to improve tour 't' by exchanging arcs; return improved tour length.

    If possible, make a series of local improvements on the solution 'tour',
    using a breadth first strategy, until reaching a local optimum.
    """
    n = len(tour)
    tinv = [0 for i in tour]
    for k in range(n):
        tinv[tour[k]] = k  # position of each city in 't'
    for i in range(n):
        a,b = tour[i],tour[(i+1)%n]
        dist_ab = D[a,b]
        improved = False
        for dist_ac,c in C[a]:
            if dist_ac >= dist_ab:
                break
            j = tinv[c]
            d = tour[(j+1)%n]
            dist_cd = D[c,d]
            dist_bd = D[b,d]
            delta = (dist_ac + dist_bd) - (dist_ab + dist_cd)
            if delta < 0:       # exchange decreases length
                exchange(tour, tinv, i, j);
                z += delta
                improved = True
                break
        if improved:
            continue
        for dist_bd,d in C[b]:
            if dist_bd >= dist_ab:
                break
            j = tinv[d]-1
            if j==-1:
                j=n-1
            c = tour[j]
            dist_cd = D[c,d]
            dist_ac = D[a,c]
            delta = (dist_ac + dist_bd) - (dist_ab + dist_cd)
            if delta < 0:       # exchange decreases length
                exchange(tour, tinv, i, j);
                z += delta
                break
    return z


def localsearch(tour, z, D, C=None):
    """Obtain a local optimum starting from solution t; return solution length.

    Parameters:
      tour -- initial tour
      z -- length of the initial tour
      D -- distance matrix
    """
    n = len(tour)
    if C == None:
        C = mk_closest(D, n)     # create a sorted list of distances to each node
    while 1:
        newz = improve(tour, z, D, C)
        if newz < z:
            z = newz
        else:
            break
    return z


def multistart_localsearch(k, n, D, report=None):
    """Do k iterations of local search, starting from random solutions.

    Parameters:
    -k -- number of iterations
    -D -- distance matrix
    -report -- if not None, call it to print verbose output

    Returns best solution and its cost.
    """
    C = mk_closest(D, n) # create a sorted list of distances to each node
    bestt=None
    bestz=None
    for i in range(0,k):
        tour = randtour(n)
        z = length(tour, D)
        z = localsearch(tour, z, D, C)
        if z < bestz or bestz == None:
            bestz = z
            bestt = list(tour)
            if report:
                report(z, tour)

    return bestt, bestz


if __name__ == "__main__":
    """Local search for the Travelling Saleman Problem: sample usage."""

    #
    # test the functions:
    #

    # random.seed(1)    # uncomment for having always the same behavior
    import sys
    if len(sys.argv) == 1:
        # create a graph with several cities' coordinates
        coord = [(4,0),(5,6),(8,3),(4,4),(4,1),(4,10),(4,7),(6,8),(8,1)]
        n, D = mk_matrix(coord, distL2) # create the distance matrix
        instance = "toy problem"
    else:
        instance = sys.argv[1]
        n, coord, D = read_tsplib(instance)     # create the distance matrix
        # n, coord, D = read_tsplib('INSTANCES/TSP/eil51.tsp')  # create the distance matrix

    # function for printing best found solution when it is found
    from time import clock
    init = clock()
    def report_sol(obj, s=""):
        print "cpu:%g\tobj:%g\ttour:%s" % \
              (clock(), obj, s)


    print "*** travelling salesman problem ***"
    print

    # random construction
    print "random construction + local search:"
    tour = randtour(n)     # create a random tour
    z = length(tour, D)     # calculate its length
    print "random:", tour, z, '  -->  ',   
    z = localsearch(tour, z, D)      # local search starting from the random tour
    print tour, z
    print

    # greedy construction
    print "greedy construction with nearest neighbor + local search:"
    for i in range(n):
        tour = nearest_neighbor(n, i, D)     # create a greedy tour, visiting city 'i' first
        z = length(tour, D)
        print "nneigh:", tour, z, '  -->  ',
        z = localsearch(tour, z, D)
        print tour, z
    print

    # multi-start local search
    print "random start local search:"
    niter = 100
    tour,z = multistart_localsearch(niter, n, D, report_sol)
    assert z == length(tour, D)
    print "best found solution (%d iterations): z = %g" % (niter, z)
    print tour

这篇关于Python旅行推销员贪婪算法的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持IT屋!

查看全文
登录 关闭
扫码关注1秒登录
发送“验证码”获取 | 15天全站免登陆