使用实例密钥进行训练和预测 [英] Training and Predicting with instance keys

查看:90
本文介绍了使用实例密钥进行训练和预测的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我能够训练我的模型并使用ML Engine进行预测,但是我的结果不包含任何识别信息.一次提交一行进行预测时,这很好用,但是当提交多行时,我无法将预测连接回原始输入数据. GCP文档讨论了如何使用实例密钥,但是我可以找不到使用实例密钥进行训练和预测的任何示例代码.以GCP人口普查示例为例,我将如何更新输入函数以通过图形传递唯一ID,并在训练期间忽略它,同时返回带有预测的唯一ID?或者,如果有人知道其他示例已经在使用同样可以帮助您的键.

I am able to train my model and use ML Engine for prediction but my results don't include any identifying information. This works fine when submitting one row at a time for prediction but when submitting multiple rows I have no way of connecting the prediction back to the original input data. The GCP documentation discusses using instance keys but I can't find any example code that trains and predicts using an instance key. Taking the GCP census example how would I update the input functions to pass a unique ID through the graph and ignore it during training yet return the unique ID with predictions? Or alternatively if anyone knows of a different example already using keys that would help as well.

来自人口普查估算器示例

def serving_input_fn():
    feature_placeholders = {
      column.name: tf.placeholder(column.dtype, [None])
      for column in INPUT_COLUMNS
    }

    features = {
      key: tf.expand_dims(tensor, -1)
      for key, tensor in feature_placeholders.items()
    }

    return input_fn_utils.InputFnOps(
      features,
      None,
      feature_placeholders
    )


def generate_input_fn(filenames,
                  num_epochs=None,
                  shuffle=True,
                  skip_header_lines=0,
                  batch_size=40):

    def _input_fn():
        files = tf.concat([
          tf.train.match_filenames_once(filename)
          for filename in filenames
        ], axis=0)

        filename_queue = tf.train.string_input_producer(
          files, num_epochs=num_epochs, shuffle=shuffle)
        reader = tf.TextLineReader(skip_header_lines=skip_header_lines)

        _, rows = reader.read_up_to(filename_queue, num_records=batch_size)

        row_columns = tf.expand_dims(rows, -1)
        columns = tf.decode_csv(row_columns, record_defaults=CSV_COLUMN_DEFAULTS)
        features = dict(zip(CSV_COLUMNS, columns))

        # Remove unused columns
        for col in UNUSED_COLUMNS:
          features.pop(col)

        if shuffle:
           features = tf.train.shuffle_batch(
             features,
             batch_size,
             capacity=batch_size * 10,
             min_after_dequeue=batch_size*2 + 1,
             num_threads=multiprocessing.cpu_count(),
             enqueue_many=True,
             allow_smaller_final_batch=True
           )
        label_tensor = parse_label_column(features.pop(LABEL_COLUMN))
        return features, label_tensor

    return _input_fn

更新: 我能够使用下面的答案中的建议代码,我只需要对其稍作更改即可更新model_fn_ops而不只是预测字典.但是,仅当我的服务输入函数是针对类似于人口普查核心样本.

Update: I was able to use the suggested code from this answer below I just needed to alter it slightly to update the output alternatives in the model_fn_ops instead of just the prediction dict. However, this only works if my serving input function is coded for json inputs similar to this. My serving input function was previously modeled after the CSV serving input function in the Census Core Sample.

我认为我的问题来自 predict_signature_def 已使用,其中包括所有输出.

I think my problem is coming from the build_standardized_signature_def function and even more so the is_classification_problem function that it calls. The input dict length using the csv serving function is 1 so this logic ends up using the classification_signature_def which only ends up displaying the scores (which turns out are actually the probabilities) whereas the input dict length is greater than 1 with the json serving input function and instead the predict_signature_def is used which includes all of the outputs.

推荐答案

更新:在1.3版中,将contrib估计量(例如tf.contrib.learn.DNNClassifier)更改为从核心估计量类tf.estimator继承.不同于其前身的Estimator将模型函数隐藏为私有类成员,因此您需要在下面的解决方案中将estimator.model_fn替换为estimator._model_fn.

UPDATE: In version 1.3 the contrib estimators (tf.contrib.learn.DNNClassifier for example), were changed to inherit from the core estimator class tf.estimator.Estimator which unlike it's predecessor, hides the model function as a private class member, so you'll need to replace estimator.model_fn in the solution below with estimator._model_fn.

Josh的答案将您带到Flowers示例,如果您要使用自定义估算器,这是一个很好的解决方案.如果您想使用固定的估算器(例如tf.contrib.learn.DNNClassifiers),则可以将其包装在自定义估算器中,该估算器增加了对密钥的支持. (请注意:我认为固定估算器进入核心市场后很可能会获得关键支持).

Josh's answer points you to the Flowers example, which is a good solution if you want to use a custom estimator. If you want to stick with a canned estimator, (e.g. the tf.contrib.learn.DNNClassifiers) you can wrap it in a custom estimator that adds support for keys. (Note: I think it's likely canned estimators will gain key support when they move into core).

KEY = 'key'
def key_model_fn_gen(estimator):
    def _model_fn(features, labels, mode, params):
        key = features.pop(KEY, None)
        model_fn_ops = estimator.model_fn(
           features=features, labels=labels, mode=mode, params=params)
        if key:
            model_fn_ops.predictions[KEY] = key
            # This line makes it so the exported SavedModel will also require a key
            model_fn_ops.output_alternatives[None][1][KEY] = key
        return model_fn_ops
    return _model_fn

my_key_estimator = tf.contrib.learn.Estimator(
    model_fn=key_model_fn_gen(
        tf.contrib.learn.DNNClassifier(model_dir=model_dir...)
    ),
    model_dir=model_dir
)

然后,可以像使用DNNClassifier一样使用

my_key_estimator,只是它会期望input_fns中具有名称为'key'的功能(预测,评估和培训).

my_key_estimator can then be used exactly like your DNNClassifier would be used, except it will expect a feature with the name 'key' from input_fns (prediction, evaluation and training).

您还需要将相应的输入张量添加到您选择的预测输入函数中.例如,新的JSON服务输入fn如下所示:

You will also need to add the corresponding input tensor to the prediction input function of your choice. For example, a new JSON serving input fn would look like:

def json_serving_input_fn():
  inputs = # ... input_dict as before
  inputs[KEY] = tf.placeholder([None], dtype=tf.int64)
  features = # .. feature dict made from input_dict as before
  tf.contrib.learn.InputFnOps(features, None, inputs)

(在1.2和1.3之间略有不同,因为tf.contrib.learn.InputFnOpstf.estimator.export.ServingInputReceiver替换,并且在1.3中不再需要填充张量到2级)

(slightly different between 1.2 and 1.3, as tf.contrib.learn.InputFnOps is replaced with tf.estimator.export.ServingInputReceiver, and padding tensors to rank 2 is no longer necessary in 1.3)

然后,ML引擎将随您的预测请求一起发送一个名为"key"的张量,该张量将传递给您的模型以及您的预测.

Then ML Engine will send a tensor named "key" with your prediction request, which will be passed to your model, and through with your predictions.

已修改key_model_fn_gen以支持忽略丢失的键值. 添加了预测键

Modified key_model_fn_gen to support ignoring missing key values. Added key for prediction

这篇关于使用实例密钥进行训练和预测的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持IT屋!

查看全文
登录 关闭
扫码关注1秒登录
发送“验证码”获取 | 15天全站免登陆