如何在Agda中定义除法运算符? [英] How to define division operator in Agda?

查看:145
本文介绍了如何在Agda中定义除法运算符?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我想分两个自然数。我做了这样的功能

  _ / _:N  - > N  - > frac 
m / one = m / one
(suc m)/ n = ??我不知道该写什么。

Please help。

解决方案



这是@gallais说的,你可以明确地使用有根据的递归,但我不喜欢这种方法,因为它是完全不可读的。数据类型

  record是{α} {A:Setα}(x:A):Setαwhere $ b $b¡ = x 
打开是

! :∀{α} {A:Setα} - > (x:A)→>是x
! _ = _

允许将值提升到类型级别,例如,您可以定义类型安全 pred 函数:

  pred + +:∀{n}  - >是(成功) - > ℕ
pred + = pred∘$

然后

  test-1:pred +(!1)≡0 
test-1 = refl

typechecks,而

 失败:pred +(!0) ≡0 
fail = refl

没有。可以用相同的方式定义减数与正减数(以确保充分发现):

  _- +::∀ {m}  - > ℕ - >是(成功) - > ℕ
n-+ im = n∸im im

然后使用我描述的这里,你可以重复减去另一个数字,直到差值小于第二个数字:

  lem:∀{nm} {im:Is(suc m)}  - > m < n  - > n + 1 im  lem {suc n} {m}(s≤s_)=s≤'s(≤⇒≤'(n∸m≤mnn))

iter-sub:∀{m} - > ℕ - >是(成功) - >列表ℕ
iter-sub n im = calls(λn - > n-+ im)< -well-founded lem(_≤?_(im))n


$ b

例如

  test-1 :iter-sub 10(!3)≡10∷7∷4∷[] 
test-1 = refl

test-2:iter-sub 16(!4)≡16∷16∷ 12∷8∷4∷[]
test-2 = refl

div + 然后就是

  _div +_:∀{m}  - > ℕ - >是(成功) - > ℕ
n div + im = length(iter-sub n im)

和版本类似到 Data.Nat.DivMod 模块中的模块(仅包含 Mod 部分):

  _div_:ℕ - > (m:ℕ){_:False(m≟0)}  - > ℕ
n div 0 =λ{()}
n div(suc m)= n div +(!(suc m))

一些测试:

  test-3:map(λn  - > n b $ b(0∷1∷2∷3∷4∷5∷6∷7∷8∷9∷[])
≡(0∷0∷0∷1∷1∷1∷ 2∷2∷2∷3∷[])
test-3 = refl

注但是,标准库中的版本还包含健全性证明:

 属性:dividend≡toℕremaining + quotient * divisor 

整个代码


I want to divide two natural number. I have made function like this

_/_ : N -> N -> frac
m / one = m / one
(suc m) / n = ??        I dont know what to write here.

Please help.

解决方案

As @gallais says you can use well-founded recursion explicitly, but I don't like this approach, because it's totally unreadable.

This datatype

record Is {α} {A : Set α} (x : A) : Set α where
  ¡ = x
open Is

! : ∀ {α} {A : Set α} -> (x : A) -> Is x
! _ = _

allows to lift values to the type level, for example you can define a type-safe pred function:

pred⁺ : ∀ {n} -> Is (suc n) -> ℕ
pred⁺ = pred ∘ ¡

Then

test-1 : pred⁺ (! 1) ≡ 0
test-1 = refl

typechecks, while

fail : pred⁺ (! 0) ≡ 0
fail = refl

doesn't. It's possible to define subtraction with positive subtrahend (to ensure well-foundness) in the same way:

_-⁺_ : ∀ {m} -> ℕ -> Is (suc m) -> ℕ
n -⁺ im = n ∸ ¡ im

Then using stuff that I described here, you can repeatedly subtract one number from another until the difference is smaller than the second number:

lem : ∀ {n m} {im : Is (suc m)} -> m < n -> n -⁺ im <′ n
lem {suc n} {m} (s≤s _) = s≤′s (≤⇒≤′ (n∸m≤n m n))

iter-sub : ∀ {m} -> ℕ -> Is (suc m) -> List ℕ
iter-sub n im = calls (λ n -> n -⁺ im) <-well-founded lem (_≤?_ (¡ im)) n

For example

test-1 : iter-sub 10 (! 3) ≡ 10 ∷ 7 ∷ 4 ∷ []
test-1 = refl

test-2 : iter-sub 16 (! 4) ≡ 16 ∷ 12 ∷ 8 ∷ 4 ∷ []
test-2 = refl

div⁺ then is simply

_div⁺_ : ∀ {m} -> ℕ -> Is (suc m) -> ℕ
n div⁺ im = length (iter-sub n im)

And a version similar to the one in the Data.Nat.DivMod module (only without the Mod part):

_div_ : ℕ -> (m : ℕ) {_ : False (m ≟ 0)} -> ℕ
n div  0      = λ{()}
n div (suc m) = n div⁺ (! (suc m))

Some tests:

test-3 : map (λ n -> n div 3)
           (0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ 7 ∷ 8 ∷ 9 ∷ [])
         ≡ (0 ∷ 0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ 2 ∷ 2 ∷ 2 ∷ 3 ∷ [])
test-3 = refl

Note however, that the version in the standard library also contains the soundness proof:

property  : dividend ≡ toℕ remainder + quotient * divisor

The whole code.

这篇关于如何在Agda中定义除法运算符?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持IT屋!

查看全文
登录 关闭
扫码关注1秒登录
发送“验证码”获取 | 15天全站免登陆