如何对浮点平方根执行Tuckerman取整 [英] How to Perform Tuckerman Rounding for Floating Point Square Root

查看:95
本文介绍了如何对浮点平方根执行Tuckerman取整的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试执行Tuckerman舍入测试,以确定正确舍入到最接近的结果.

I am trying to perform a Tuckerman Rounding Test in order to determine the correctly rounded to nearest result.

我用C ++创建了一个程序,将两个解与一个数字的平方根进行比较,并对它们进行塔克曼测试.但是,C ++数学库解决方案无法通过塔克曼测试,所以我想知道这可能是错的吗?

I created a program in C++ to compare two solutions to a square root of a number and perform a tuckerman test on them. However, the C++ math library solution fails to pass the tuckerman test, so I'm wondering what could be wrong?

这是我的输出:

Square root program started
Input value is 62a83003

===Tuckerman Test with MATLAB result===
Square root result from MATLAB = 5112b968
g*(g-ulp) = 62a83001
b = 62a83003
g*(g+ulp) = 62a83003
=====>Passes Tuckerman test


===Tuckerman Test with correct result===
Correct square root result = 5112b969
g*(g-ulp) = 62a83003
b = 62a83003
g*(g+ulp) = 62a83005
=====>Fails Tuckerman test

这是我的代码(C ++):

Here is my code (C++):

#include <iostream>
#include <cmath>
#include <fstream>

using namespace std;

union newfloat{
    float f;
    unsigned int i;
};

int main ()
{
// Declare new floating point numbers
newfloat input;
newfloat result, resultm1, resultp1;
newfloat correct_result, correct_resultm1, correct_resultp1;
newfloat resultm1_times_result, resultp1_times_result;
newfloat correct_resultm1_times_result, correct_resultp1_times_result;

// Print message at start of program
cout << "Square root program started" << endl;
input.i = 0x62A83003; // Input we are trying to find the square root of
cout << "Input value is " << hex << input.i << "\n" <<  endl; // Print input value

result.i = 0x5112B968; // Result from MATLAB
resultm1.i = result.i - 1; // value minus 1 ulp
resultp1.i = result.i + 1; // value plus 1 ulp

correct_result.f = sqrt(input.f);          // Compute correct square root
correct_resultm1.i = correct_result.i - 1; // correct value minus 1 ulp
correct_resultp1.i = correct_result.i + 1; // correct value plus 1 ulp

resultm1_times_result.f = result.f * resultm1.f; // Compute g(g-ulp) for matlab result
resultp1_times_result.f = result.f * resultp1.f; // Compute g(g+ulp) for matlab result

correct_resultm1_times_result.f = correct_result.f * correct_resultm1.f; // Compute g*(g-ulp) for correct result
correct_resultp1_times_result.f = correct_result.f * correct_resultp1.f; // Compute g*(g+ulp) for correct result


// Print output from MATLAB algorithm and perform tuckerman test
cout << "===Tuckerman Test with MATLAB result===" << endl;
cout << "Square root result from MATLAB = " << result.i << endl;
cout << "g*(g-ulp) = " << hex << resultm1_times_result.i << endl;
cout << "b = " << hex << input.i << endl;
cout << "g*(g+ulp) = " << hex << resultp1_times_result.i << endl;
if ((resultm1_times_result.f < input.f) && (input.f <= resultp1_times_result.f))
  cout << "=====>Passes Tuckerman test" << endl;
else
  cout << "=====>Fails Tuckerman test" << endl;


cout << "\n" << endl;

// Print output from C++ sqrt math library and perform tuckerman test
cout << "===Tuckerman Test with correct result===" << endl;
cout << "Correct square root result = " << hex << correct_result.i << endl;
cout << "g*(g-ulp) = " << hex << correct_resultm1_times_result.i << endl;
cout << "b = " << hex << input.i << endl;
cout << "g*(g+ulp) = " << hex << correct_resultp1_times_result.i << endl;
if ((correct_resultm1_times_result.f < input.f) && (input.f <= correct_resultp1_times_result.f))
  cout << "=====>Passes Tuckerman test" << endl;
else
  cout << "=====>Fails Tuckerman test" << endl;

return 0;
}

推荐答案

引入塔克曼四舍五入为平方根的原始出版物为:

The original publication that introduced Tuckerman rounding for the square root was:

Ramesh C. Agarwal,James W. Cooley,Fred G. Gustavson,James B. Shearer,Gordon Slishman,Bryant Tuckerman, IBM J. Res.,"IBM System/370的新标量和矢量基本函数".显影,卷. 1986年3月30日,第2期,第126-144页.

Ramesh C. Agarwal, James W. Cooley, Fred G. Gustavson, James B. Shearer, Gordon Slishman, Bryant Tuckerman, "New scalar and vector elementary functions for the IBM System/370", IBM J. Res. Develop., Vol. 30, No. 2, March 1986, pp. 126-144.

本文特别指出,用于计算乘积g*(g-ulp)g*(g+ulp)的乘法是截断的,而不是四舍五入的乘法:

This paper specifically points out that the multiplications used to compute the products g*(g-ulp) and g*(g+ulp) are truncating, not rounding multiplications:

但是,这些不等式可以证明等同于

y - * y< x< = y * y +

y- * y < x <= y * y+ ,

其中,*表示System/360/370乘法(将结果截断),因此可以轻松进行测试 无需额外的精度. (请注意不对称性:1< 1< =.)如果左不等式失败,则y太大;否则,y太大.如果 右不等式失败,y太小."

where * denotes System/360/370 multiplication (which truncates the result), so that the tests are easily carried out without the need for extra precision. (Note the asymmetry: one <, one <=.) If the left inequality fails, y is too large; if the right inequality fails, y is too small."

以下C99代码显示了如何成功利用Tuckerman舍入以单精度平方根函数正确地舍入结果.

The following C99 code shows how Tuckerman rounding is successfully utilized to deliver correctly rounded results in a single-precision square root function.

#include <stdio.h>
#include <stdlib.h>
#include <fenv.h>
#include <math.h>

#pragma STDC FENV_ACCESS ON
float mul_fp32_rz (float a, float b)
{
    float r;
    int orig_rnd = fegetround();
    fesetround (FE_TOWARDZERO);
    r = a * b;
    fesetround (orig_rnd);
    return r;
}

float my_sqrtf (float a)
{
    float b, r, v, w, p, s;
    int e, t, f;

     if ((a <= 0.0f) || isinff (a) || isnanf (a)) {
         if (a < 0.0f) {
             r = 0.0f / 0.0f;
         } else {
             r = a + a;
         }
     } else {
         /* compute exponent adjustments */
         b = frexpf (a, &e);
         t = e - 2*512;
         f = t / 2;
         t = t - 2 * f;
         f = f + 512;
         /* map argument into the primary approximation interval [0.25,1) */
         b = ldexpf (b, t);
         /* initial approximation to reciprocal square root */
         r =        -6.10005470e+0f;
         r = r * b + 2.28990124e+1f;
         r = r * b - 3.48110069e+1f;
         r = r * b + 2.76135244e+1f;
         r = r * b - 1.24472151e+1f;
         r = r * b + 3.84509158e+0f;
         /* round rsqrt approximation to 11 bits */
         r = rintf (r * 2048.0f); 
         r = r * (1.0f / 2048.0f);
         /* Use A. Schoenhage's coupled iteration for the square root */
         v = 0.5f * r;
         w = b * r;             
         w = (w * -w + b) * v + w;
         v = (r * -w + 1.0f) * v + v;
         w = (w * -w + b) * v + w;
         /* Tuckerman rounding: mul_rz (w, w-ulp) < b <= mul_rz (w, w+ulp) */
         p = nextafterf (w, 0.0f);
         s = nextafterf (w, 2.0f);
         if (b <= mul_fp32_rz (w, p)) {  
             w = p;
         } else if (b > mul_fp32_rz (w, s)) {
             w = s;
         }
         /* map back from primary approximation interval by jamming exponent */
         r = ldexpf (w, f);
     }
     return r;
 }

 int main (void)
 {
     volatile union {
         float f;
         unsigned int i;
     } arg, res, ref;
     arg.i = 0;
     do {
         res.f = my_sqrtf (arg.f);
         ref.f = sqrtf (arg.f);
         if (res.i != ref.i) {
              printf ("!!!! error @ arg=%08x: res=%08x ref=%08x\n",
                      arg.i, res.i, ref.i);
              break;
         }
         arg.i++;
    } while (arg.i);
    return EXIT_SUCCESS;
}

这篇关于如何对浮点平方根执行Tuckerman取整的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持IT屋!

查看全文
登录 关闭
扫码关注1秒登录
发送“验证码”获取 | 15天全站免登陆